数字特性法
数字特性法指的是在数学运算中,根据答案的奇偶性或是数字的倍数特性来快速确定正确答案的方法,数字特性主要包含奇偶特性和倍数特性两类。
1、奇偶特性
奇偶特性1:偶数乘以任何整数都是偶数
这个特性一般在求解不定方程问题或题目中出现平均分、2倍、质数时考虑使用。例如:在4x、5y、6z中,4x与6z一定是偶数,但5y有可能为奇数也有可能为偶数。
【例1】(2014国考)小王、小李、小张和小周4人共为某希望小学捐赠了25个书包,按照数量多少的顺序分别是小王、小李、小张、小周。已知小王捐赠的书包数量是小李和小张捐赠书包的数量之和;小李捐赠的书包数量是小张和小周捐赠的书包数量之和。问小王捐赠了多少个书包:
A.9
B.10
C.11
D.12
【例2】(2013国考)小王参加了五门百分制的测验,每门成绩都是整数,其中语文94分,数学的得分最高,外语的得分等于语文和物理的平均分,物理的得分等于五门的平均分,化学的得分比外语多2分,并且是五门中第二高的得分,问小王的物理考了多少分?
A.94
B.95
C.96
D.97
奇偶特性2:两数之和与两数之差的奇偶性相同
这个特性一般在题目给定两数之和,要求两数之差时使用,反之亦可。例如:甲乙两班人数和是80人,是偶数,则甲乙两班人数差一定也是偶数。
【例1】(2015河南)某旅游公司有能载4名乘客的轿车和能载7名乘客的面包车若干辆,某日该公司将所有车辆分成车辆数相等的两个车队运送两支旅行团。已知两支旅行团共有79人,且每支车队都满载,问该公司轿车数量比面包车多多少辆?
A.5
B.6
C.7
D.8
2、倍数特性
若A/B=m/n(A、B为整数,m/n为最简整数比),则有:①A能被m整除;②B能被n整除;③A±B分别能被m±n整除。
1、倍数特性一般在题目给出了分数、倍数、百分数等比例关系时考虑使用。例如:①甲的年龄是乙的年龄的1/3,则乙的年龄是3的倍数;
②甲走的路程是乙的路程的37.5%(3/8),则甲乙的路程之和是11的倍数;
③甲的工作时间是乙的工作时间的1.6倍=8/5,则甲的工作时间是8的倍数,乙的工作时间是5的倍数。
【例1】(2017国考)某超市购入每瓶200毫升和500毫升两种规格的沐浴露各若干箱,200毫升沐浴露每箱20瓶,500毫升沐浴露每箱12瓶。定价分别为14元/瓶和25元/瓶。货品卖完后,发现两种规格沐浴露的销售收入相同,那么这批沐浴露中,200毫升的最少有几箱?
A.3
B.8
C.10
D.15
【例2】(2016国考)有一位百岁老人出生于二十世纪,2015年他的年龄各数字之和正好是他在2012年的年龄的各数字之和的三分之一,问该老人出生的年份各数字之和是多少(出生当年算作0岁)?
A.14
B.15
C.16
D.17
【例1】(2015国考)某单位有50人,男女性别比为3:2,其中有15人未入党,若从中任选1人,则此人为男性党员的概率最大为多少:
A.3/5
B.2/3
C.3/4
D.5/7
【例2】(2013国考)某种汉堡包每个成本4.5元,售价10.5元。当天卖不完的汉堡包即不再出售,在过去十天里,餐厅每天都会准备200个汉堡包,其中有六天正好卖完,四天各剩余25个。问这十天该餐厅卖汉堡包共赚了多少元?
A.10850
B.10950
C.11050
D.11350
王智公考 转载
上一条:王智公考丨逻辑判断之因果论证
下一条:王智公考丨利用求异论证巧解削弱加强型题-2023国家公务员考试行测解题技巧 |
返回列表 |
版权所有:王智公考丨国考省考笔试面试培训
设计制作:网商天下